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Abstract--Advanced computer Codes for water reactor loss-of-coolant analysis are based on the use of the 
two-fluid model of two-phase flow, in which conservation equations are solved for the gas and liquid phases 
separately. The standard two-fluid equations, however, sometimes predict the growth of instabilities in the 
flow, and occasionally become improperly posed. These difficulties have in the past led to the proposal of 
several different forms for the conservations equations. 

To help resolve these uncertainties a widely accepted form of the one-dimensional two-fluid equations is 
used to calculate wave propagation speeds, and stability limits, for the illustrative case of a frictionless 
horizontal stratified gas-liquid flow. Calculated propagation velocities are shown to agree with the 
appropriate limit of an exact solution, and the predicted stability limits are found consistent with available 
observations on the stability of the stratified flow regime. 

These comparisons help improve confidence in the ability of the two-fluid equations to analyse more 
complex problems in transient two-phase flow. 

I. INTRODUCTION 

Models used to analyse postulated loss-of-coolant accidents in water cooled nuclear reactors 
generally treat the flowing two-phase mixture as homogeneous, or invoke external correlations 
to account for effects of relative motion between the phases. In advanced computer codes, 
however, increasing use is being made of the two-fluid or separated-flow formulation, in which 
the conservation equations are solved for the phases separately (Liles et al. 1978). Use of the 
two-fluid model enables the non-equilibrium exchange of heat mass and momentum between 
the phases to be more easily included in the analysis. 

A recurring problem in using the two-fluid method arises because commonly used forms of 
the conservation equations frequently predict instabilities which are not experimentally obser- 
ved. In some cases the instabilities occur even for high frequency perturbations and the 
resulting unbounded growth rates imply that the conservation equations are iIl-posed,f in the 
sense that a unique solution does not exist for a given set of initial and boundary conditions 
(Gidaspow 1974, Ramshaw & Trapp 1978). For strongly coupled flows (e.g. bubble flow) the 
problem of instability and illposedness can be removed by allowing for the presence of inertial 
interactions between the phases (StuhmiIler 1977). However for other flow regimes (e.g. 
stratified flows) it is not obvious that such interaction terms are present. This problem has 
caused a great deal of confusion in the literature, leading some authors to suggest that 
momentum exchange terms must have been omitted from the conservation equations. Various 
"corrected" equation sets have been proposed along these lines (see e.g. Lyczkowski et al. 

1975, Agee et al. 1978, Mathers et al. 1978). 
In this paper we examine the ability of conventional one-dimensional two-fluid equations to 

describe an illustrative example of a horizontal stratified flow in which viscosity is ignored, but 
effects of gravity and surface tension are retained. The velocity of small amplitudes waves 
predicted by the equations is compared with the exact solution that can be obtained for this 
case. Implied stability limits are then discussed, and compared with experimental observations 
on the breakdown of stable stratified flows in horizontal ducts. 

?A discussion of the conditions for, and implications of, ill-posed equations is given by Richtmyer & Morton (1976). 

295 



2% K.H. ARDRON 

2. O N E - D I M E N S I O N A L  TWO-FLUID MODEL FOR S T R A T I F I E D  FLOW 

We first give one-dimensional two-fluid equations appropriate for a horizontal stratified flow. 
For simplicity we consider a duct of rectangular cross-section (see figure 1) and ignore 
dissipative effects of viscosity and interphase mass and heat transfer. The stability and 
well-posedness of the conservation equations is examined by considering the motion of small 
amplitude waves. Predicted wave velocities are compared with results of exact two-dimensional 
calculations in section 3, and predicted stability limits compared with data in section 4. 

2.1 Derivation o[ conservation equations 

The two-fluid equations for conservation of mass momentum and evergy are derived by Ishii 
(1975) for a general three-dimensional two-phase flow. One-dimensional forms can be obtained 
by integrating across the duct area. Neglecting viscous interactions, and for the moment 
ignoring pressure changes at the interface due to surface tension, the equations for mass and 
momentum conservation for phase j so obtained are (for horizontal flow) 

~ j )  + ~x(ajpf;j) = o 

- c ~ a .  

aiPJ Ot ~ c~x 

[l] 

Here x is the spatial coordinate along the duct axis and t is time. p~, Pj and U~ denote 
respectively the density, pressure and velocity of phase j and P* is the interface pressure. The 
over-bars refer to phase average quantities defined by: 

(lj = A f  I I. aj d A .  
d A  

J 

a t -- Aj[A is the fraction of the duct area occupied by phase j. Note that (i) averages of products 
have been taken as equal to products of averages and (ii) all flow variables represent mean 
values over some short time interval. In the following j refers to either the gas phase j -= G or 
the liquid phase j - L. 

Equivalent equations to [1] have been derived in spatially averaged form by Agee et al. 

(1978). 
Gravity does not occur explicitly in [1], but influences the average phase pressures through 

the hydrostatic effect. In the gas phase we have, for the present stratified system: 

PG = P* - Yp6g, 

where y is the distance above the interface and g is the acceleration due to gravity. It follows 
that, for the present rectangular duct: 

fi~ = P* - ~aGpGgH, [2] 

where H is the duct height. 

y=h G 

Gas 
-~G phase 

H 

L 
Figure 1. Horizontal stratified flow in a rectangular duct. 
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The corresponding result for the liquid phase is 

PL = P* + ½aUoLgH. 

Substituting for/~ in [1] using [2] and [2'] we get 

0 + 0  _ -  

_a0i+ _-'-~ aP* _ ' 
a~j at a~ojUi OX + ctf-~- +- ctiffigH ~ = 0 , 
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[2q 

[3] 

where the positive and negative signs are appropriate for the liquid and gas phases respectively. 

2.2 Propagation analysis 

We consider the motion of small amplitude waves of angular frequency oJ and wavelength k 
travelling along the duct axis. In the disturbed flow oscillations in the primary variables are 
given by 

= ~o + ¢' exp i(tot - kx ) ,  [4] 

where $ - P*, pj, % Uj. ~o denotes the value of ¢, in the undisturbed flow and ~' '~ ~o. Variations 
in density are related to pressure variations through 

i f= P/Ic:, [5] 

where cj is the sound speed in phase ]. 
In the undisturbed flow the interface is assumed to be horizontal (see figure 1) so that 

aoo = ha/H, a t ,  = h d H .  
Substituting the perturbed forms [4] into the conservation equations [3] and using [5], 

neglecting terms of higher than first order in the primed quantities, we get a set of homogeneous 
linear simultaneous equations in the primed quantities. The secular equation for this set, which 
is the required dispersion relation, has the form 

hGp ,#G2 0)L 2 + hL~tL2 0)O 2 -- gk2 hL ha(p , # a  z - I~L z) = O, [6] 

where #2 = (k s - aspicS) and as s = (to - Uiok ). p,  is the density ratio, pL/Po. 

Equation [6] forms a quartic equation for the phase velocity ~o/k (which is frequency 
independent). The four roots correspond to two surface waves (gravity waves) and two 
pressure waves. A necessary condition for these roots to be real is that the discriminant of the 
quartic, A, is positive (see Turnbull 1952). For [6] this condition may be written as 

where 

MF Vol. 6, No. 4--B 

A = P - 27fl > 0, [7] 

I = I (U~L--/3~ --/~,)~ + "/, 

I ~ 1 , y{~(U~L--/31 U2 



298 K.H. ARDRON 

and 

pLCL / -b S/ ' 

~2-~hL~G(l+ghG~L~lhG-~ hL-~2G~-I 
pccc 2 } \ c02 + CL ! ' 

7 = ghahdpL -  pa) \'-~f'a2 - -~L  2 ) • 

When A < 0, [6] has two complex conjugate roots oJ/k = a + ib (say). This implies that a 
small perturbation will grow at a rate proportional to exp (kbt) ,  indicating the onset of 
instability.t 

In the limit of incompressible flow (CL, CO--,oo), [6] becomes a quadratic in ~o/k and the 
condition for stability is then simply that the relative velocity U~L ( = Uo - UD satisfies: 

UaL < V(g (pL  -- pa)(ha/pa + hL/PL)) . [8] 

This is the long wavelength stability condition derived by Wallis & Dobson (1973) using 
potential flow theory. 

The critical relative velocities for instability predicted by [7] and [8] are plotted in figure 2 
for air/water flows at 1 and 41 atmospheres (p, = 820 and 20 respectively) in a 10 cm duct. For 
compressible flow the unstable region lies between the upper and lower (solid) curves. For the 
incompressible case the entire region above the lower (broken) curve is unstable. It is 
interesting to note that whereas the lower boundary of the unstable region is virtually unaltered 
by compressibility (and hence well represented by [8]) the upper boundary does not even exist 
for incompressible flows. The restabilisation at high relative velocities for compressible flows is 
explained as follows. At subsonic gas flows the instability is a long wavelength Kelvin- 
Helmholtz instability which is driven by the pressure reduction at a wave crest caused by the 

tBecause the growth rate is unbounded with respect to k, [5] are actually ill-posed for A < 0 (see e.g. Richtmyer & 
Morton 1968). It can be shown that introduction of surface tension effects can remove the high frequency instabilities 
which lead to iU-posedness. However even with surface tension included [3l still predict instability to long wavelength 
pertubations when A < 0. 
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Figure 2. Relative velocities for onset of instability predicted by one-dimensional model of stratified flow. (Key: 
, Compressible flowl7]; . . . . . .  , Incompressible flow[8]. Calculations given for an air-water system.) 
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constriction of the gas flow. At supersonic velocities the area reduction causes a recovery in gas 
pressure, which opposes wave growth. This ultimately stabilises the flow. 

Equation [8] is compared with data on stability of stratified flow in section 4. 

3. TWO-DIMENSIONAL ANALYSIS 

A one-dimensional model of two-phase flow should give a correct description of wave 
motion in the limit when the wavelength is large compared with the length-scale of the flow 
structure across the duct. Thus a useful check on a one-dimensional approximation is provided 
by comparing predicted wave motion with the long wavelength limit of an exact solution. An 
exact analysis for small amplitude wave propagation is an infinite rectangular duct containing an 
inviscid stratified compressible two-phase flow is given briefly below. 

3.1 Governing equations and propagation analysis 
We again consider the geometry shown in figure 1. In fixed co-ordinates, the equations for 

conservation of mass and momentum for phase ] are: 

JOy Pi Ox 

v 0_Sv + + 10_fie 
Ot J Ox ~ Oy = -g  

[9] 

where U and V are the particle velocities in the x and y directions respectively. 
If the displacement of the interface at time t is denoted by y = ~(x, t), and ~ is sufficiently 

small, pressure and velocity boundary conditions at the interface can be written (see e.g. Lamb 
1932), 

027 
PL-Po = - t r - ~ f  

at y = r/(x, t), [10] 

where tr is the surface tension. The boundary conditions at the walls are: 

VG =O at y = hc t 
VL=0 at y = -h l ,  " [111 

To calculate the motion of pressure and surface waves equations [9]-[11] are rewritten in 
co-ordinates moving vertically with the interface, and then solved for the motion of small 
perturbations of the form 

= ~o + ~ ' (y)  e i ( ' ~ t - ~ )  . 

Details of the analysis are given in the Appendix where it is shown that the required wave 
dispersion relationship is 

2 1)IF" 
~'*'°L2~L coth (~LhD + o,c-~c coth (~ahc) = [PaJ'°" + g{\tzL 2p* _ [121 
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For ~ =g  = UL = UG = 0 [12] is the dispersion relationship for pressure waves in a gas- 
liquid layer derived by Morioka & Matsui (1975). In the limit of incompressible flow ( c s ~ ,  
# j ~ k )  it reduces the usual result for surface wave propagation in a liquid of finite depth 
(Milne-Thomson 1968). 

Equation [12] can be solved numerically for the phase velocity (Mk). Figure 3 shows the 
results of illustrative calculations for a stationary air-water system at atmospheric pressure, 
(ac = 0.5). There is a single surface wave [curve (a)], and an infinite number of acoustic wave 
modes [(b), (c), (d), etc.] only the first four of which are shown. Acoustic wave modes of above 
lowest order [(c), (d), (e), etc.] are two-dimensional in character, with a cyclic variation of 
pressure and velocity across the duct width. 

3.2 Long wavelength limit 
For wavelengths large compared with the duct height [17] approaches the limit: 

hGp,tzG2 ogL2 + hL/zL2 tOG2 -- {~c, + g [  p* I \tZt2 I~G2) } k2hLhGt.tL21~G2--O. [13] 

Equation [13] is a reasonable approximation for kH ~<0.4 when (tzshflcoth(#shj) differs 
from unity by less than 5 per cent. However, for these long waves travelling in ordinary liquids 
in pipes of practical sizes the term in ~r is usually less than 1 or 2 per cent of the term in g. 
Thus, for conditions where [13] is valid it is sufficient to write 

h "  2to 2 "k2h h ( * "  z . 2~ , hGp*l-tG2tOL 2 + LPt. G - -  ~ L G P PG - -  I'LL I = 0 

which is identical to the one-dimensional result [6] obtained from [3]. 

4. D I S C U S S I O N  

It has been seen that the one-dimensional two-fluid equations for a stratified flow with 
gravity, with surface tension ignored, predict wave propagation velocities which agree with an 
exact two-dimensional analysis in the appropriate low frequency limit. Also the one-dimen- 

sional equations are well-posed and stable over a range of (subsonic) relative velocities 
UGL < Uc, which is approximated well by [8]. The predicted instability for larger relative 
motions is a long wavelength Kelvin-Helmholtz instability (in which liquid is driven towards a 
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Figure 3. Velocity of acoustic and surface waves in a stratified air-water system at atmospheric pressure 
(calculations for ac, = 0.5, H = 10 cm, o-= 73.10 -3 Nm-L c6 = 331 ms t, q. = 1460 ms-I). 
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• Data of Wallis & Dobson (lg73) 
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Figure 4. Comparison between [8] and observed relative velocities for the breakdown of horizontal stratified 
flow. 

developing wave crest because of the local pressure reduction which results from the con- 
striction of the gas flow). In the absence of gravity the instability is predicted for all finite 
relative velocities, with or without the inclusion of surface tension. 

It is interesting to compare the implied stability limits with experimental observations of 
stratified flows. It has been observed that these flows are indeed only partially stable, and at 
sufficiently high interphase relative velocities transition to slug flow (in which the gas travels in 
long bubbles separated by slugs of liquid bridging the duct). Kordyban & Ranov (1967) 
suggested that this transition is a manifestation of the Kelvin-Helmholtz instability, and Wallis 
& Dobson (1973) observed that experimental measurements of the critical relative velocity 
could be satisfactorily correlated using the long wavelength instability criterion (8), if the r.h.s. 
is multiplied by a factor of 0.5. They suggested that this correction was probably needed to 
allow for modification of the ideal flow pressure field caused by separation at the wave crest. 
Figure 4 compares (8) with available measurements of UcL for the onset of slugging in 
horizontal stratified flows. All data are for atmospheric pressure air-water systems and 
rectangular channels (2 < H < 30 cm). 

It is seen that [8] over-predicts the transition velocity by a factor of about two, as expected. 
The implication is that when the governing two-fluid equations [1] are applied to a stratified flow 
they are stable and well-posed over a greater range of conditions than these flows are actually 
stable in practice. 

It would be interesting to check that the flow restabilisation for super-sonic gas velocities 
also occurs in the manner suggested by the simple two-fluid calculations (section 2.2). It 
appears, however, that at present there are no high-speed flow data available to make any 
comparisons possible. 

The observation that one-dimensional model is able to give an exact representation of the 
motion of long waves in an inviscid gas-liquid flow, and can predict flow stability over a 
realistic range, gives confidence that the adopted form of the conservation equations [1] is 
reasonable. 

5. CONCLUSIONS 

To help resolve uncertainties in what form is appropriate for the conservation equations of a 
one-dimensional two-fluid model a standard set of two-fluid equations has been used to 
calculate wave velocities and stability limits for the example of a frictionless stratified 
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gas-liquid flow. It has been found for this case that in addition to predicting stability over a 
realistic range of conditions the two-fluid equations give wave velocities in agreement with the 
appropriate limit of an exact solution. 

This work gives confidence in the use of these standard two-fluid equations for general 
application in transient two-phase flow analysis. 

Acknowledgement--This paper is published by permission of the Central Electricity Generat- 
ing Board. 
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APPENDIX 

Calculation o[ wave velocities in a horizontal stratified flow 
To calculate the velocity of small amplitude waves it is convenient to transform [11 into 

moving co-ordinates fixed in the gas liquid interface, defined by: 

x' = x; y' = y - ~/(x, t); t' = t. [A1] 
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The transformed conservation equations for phase j are 

- ~ ay'* T ;  ~p~u~- ,1, T~(pjuj) + ~ 0 ~ )  = o, at' 

auj_ ov~, ~ ~,1a_~v.+ a_~v.. 1 ~  1 ~ =  o at' rl2 ay' ~" Uj ax' - By' Vi ay' +p j  ax ' - -~ i  By' ' 

at' - ,12 ay'  + ~ ax - ' ay' + ~ ~ + g = 0, [A2] 

where ,11 = a,11ax, ,12 = a,11at. 

In the unperturbed flow the interface is assumed to be horizontal and small density 
variations due to the hydrostatic pressure gradient are ignored. Thus 

Vio = 7/o = O; Pjo = P *  - Ypjog. 

A perturbation is then imposed so that 

Uj = Ujo + •u/; vj = •v/ 1 

P j = P ~ o + • P / ;  pj = .io+ •p/ 

~ / =  •.1' 

[A3] 

[A4] 

The solutions of [A5] must satisfy boundary conditions obtained by inserting [A3] and [A4] in 
[10] and [ll] 

PL' - Po ' =  - wd2 *1' / Ox 2 
~ ' =  a,1 ' /at '+ Uioa,1'lax'J at y ' = 0  

vG - 0 at  h ~  - • .1'  

VL ' = 0  at Y ' = - h L - • ~ ' .  

[A6] 

We now consider plane wave perturbations 

pj'll3j(y) = u//a/(y) = v j ' /~ ( y )  = .1'/~ = exp i(tot - kx), 

where we have dropped the primed superscripts from the spatial co-ordinates. Substituting 
these forms into [A5] and [A7] gives a set of ordinary differential equations in the wave 

where • is small. Substituting [A4] and [A3] into [A2], using the fact that p/'= pj ' l c  fi, ignoring 
terms of above first order in •, we get the following linearised equations 

.L.~_ _- U c~ L at' v,o ax, j ax' ay' 

au_L , ,  a . /  ~ l ae_L. a~' _ a 
at' + ui° ax' T p j  ax' " ~  ax' - v  [A5] 

. .  dv__~. 1 0 p j ' .  g 
at' + Ujo ax' *~ ay' * ~ P / = 0 .  
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amplitudes 

where 
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itoj~Oj - ipjci2kFq = - pici 2 d~i[d y 

- kp~ + pjoo~j - p~kg¢7 = 0 

gpj/ c~ + i,ojOj~j = - d ~ j [ d y ,  

[A7I 

3o =0 at y = h o  

~L=0 at y = - h L  [A8] 

/~L-/~=.~k2~/  at y = 0 .  
V k = ll"ltok .I 

The first term on the left hand side of the third of [A7] arises because of the effects on the 
hydrostatic pressure gradient of small fluctuations in density and can be safely neglected. 
Solving the resultant equations it is easily shown that 

fij = B l i e  ~'~y + B2j e -~'jy - p i ¢ l g k 2 / I . t ~  . 

A corresponding relation exists for the fi's. If these expressions are substituted in [A8] four 
homogeneous linear equations are obtained for the four integration constants Btj, B2j. The 
secular equation for this set is the required dispersion relation, which has the form 

O,tOL2~G coth (IZLhL) + ojO2tZL coth (Izah~) = + g - k2#LtZG. [A9] 


